Thursday, March 19, 2020

Solar Photovoltaic (PV)

Solar Photovoltaic (PV) Solar Photovoltaic (PV) Solar photovoltaic (PV) uses solar cells to capture energy from sunlight and converts it to electricity by photovoltaic effect through assembling solar cells. Transmitted through solar modules and solar panels, sunlight is easily converted to solar power that can be supplied to off-grid areas as alternative to power solutions in remote and dispersed communities.Advertising We will write a custom essay sample on Solar Photovoltaic (PV) specifically for you for only $16.05 $11/page Learn More Solar photovoltaic (PV) project is a predominant technology that consists of 10-100 Wp of solar PV panel that attract solar radiations through daylight and stores the energy in the automobile battery which is then transmitted through cabling and low-wattage Dc lamps (Energy and Mining Sector Board, 2007). Practical application of photovoltaic cells producing electricity from sunlight is applied by connecting a series of modules, interconnected in p arallels or series creating an array of an additive voltage. Photons in sunlight hit solar panels and absorbed by silicon (semiconducting materials) (Shive, 1959). Electrons being charged are knocked loose from their atoms, allowing them to flow through the silicon in a single direction to produce electricity (silicon) (Lorenzo et al, 1994, p.78; Smee, 1849). Arrays of solar cells are convert the solar energy into usable amount of direct current (DC) electricity which could be applied to development activities such as water pumping, small cottage industry, poultry rearing, fish farming among others (Lorenzo et al, 1994, p.78; Anderson 2001). Introduction Science and technology has defined desired service outcome for end users. Use of solar photovoltaic technology has amplified and transformed the rural poor population who can not afford electricity (Wolf, 1976). It requires active participation of community members, who are the end users beneficiaries and the government, should acti vely participate to foresee the project completion. This essay demonstrates how technology sector, for this instance, Solar photovoltaic (PV), a solar energy that is currently processed by World Bank in Bangladesh has incredibly transformed the living standards of the rural poor population.Advertising Looking for essay on other technology? Let's see if we can help you! Get your first paper with 15% OFF Learn More Data obtained for this analysis is culmination research efforts gathered between World Bank projects and extensive assessment performed by a group of industry practitioners in Bangladesh in pursue of project management and Information technology programs. Developing countries have over the years been striving to provide energy solutions to the poor marginalized areas. Despite many projects that have been implemented for years, more than 1.5 billion people in developing countries mostly in the Sub- Saharan African region and South Asia remain without access to electricity services today. In this regard, World Bank continue to implement projects to meet Bangladesh lightening and other basic energy needs since majority of the households in the rural areas depend on expensive fuel based energy power such as kerosene, which are indeed inefficient and polluting. World Bank’s project uses renewable energy-based technologies ranging from solar photovoltaic (PV) systems to micro hydropower to off-grid areas as alternative to power solutions in remote and dispersed communities (Lorenzo, 1994). This projected has also been accelerated due to the recent increment of fuel prices. Among the financiers, World Bank is the leading sponsor of the off-grid electrification benefiting more than 1 million households including both small and medium size enterprises. Solar Thermal Power Plant in Bangladesh enabled sustainment of community development activities such as water pumping, small cottage industry, poultry rearing, fish farming among o thers. The study starts by mentioning impacts of solar photovoltaic (PV) on Bangladesh society, problems inherent within the project application of solar photovoltaic (PV) in Bangladesh rural development, national subsidiaries and the government working to meet the basic energy needs. The analysis did however conclude that PV improved living standards and the livelihood of the rural poor population.Advertising We will write a custom essay sample on Solar Photovoltaic (PV) specifically for you for only $16.05 $11/page Learn More This therefore brings us to the conclusion that technology is indeed a practice that requires testing regimes to arrive at best practices. In this regard, understanding both internal and external processes rather than relying on the prescribed best practices within information technology industry is very important. Overview of Bangladesh Community Many rural communities in Bangladesh require energy solutions to sustain their economic activities. Many of their projects are usually constrained by lack of modern supply of energy and jeopardized their ability to live above poverty levels. Economic activities related to water pumping, small cottage industry, poultry rearing, fish farming among others are very important in sustaining community development. Many of these projects require small amount of power as low as 100w to 3kW, which could be provided by PV. In this case, the government should initiate and enhance productive activities for long-term project sustainability. This brought us to the conclusion that the major ingredients to providing off-grid require technical assistance and adequate financing from the government, private subsidiaries and international donors. Therefore the costs of PV built to serve the off-grid community need to be justified in its productive loads especially in daytime when the sunshine is out enough to supply nighttime household loads, otherwise the wall project would not be cost e ffective (Cabraal et al, 2008, p.15). Bangladeshi government should ensure that regulatory requirements designed for off-grid markets are appropriate, devise reporting and service quality standards in rural areas and set lower costs that can be redistributed over an extended period (Reiche et al, 2006). For PV services for instance, Reiche et al (2006) argues that the only regulatory body that would foresee the completion of the project would be the government that provides subsidies for system purchase and installation.Advertising Looking for essay on other technology? Let's see if we can help you! Get your first paper with 15% OFF Learn More Reiche and his colleagues (2006) add that regulatory actions involve accreditation of participating companies, settings and enforcing standards (preferably adopting internationally accepted standards), verification of installation, and random monitoring of system performance-actions that World Bank-supported projects usually require of counterpart government agencies (p.7). Impacts of solar photovoltaic (PV) on Bangladesh society Solar photovoltaic (PV) and SHS technical options enhance affordability and provide smaller, lower-power solar systems that offer lower quantity of service without compromising its quality (Cabraal et al, 1996). For example, Cabraal and his colleagues (1996) analysis demonstrate that a solar panel costing $ 50 to $75 would provide 3-4hours of lighting on a daily basis. Also, the SHS costing $ 600 can operate up to 3-4 hours of lighting and radio daily. LED technology advances are also cost efficient and can also be adopted into the most marginalized and ret ail infrastructure. Overall, adequate attention to SHS products and services are needed lead to reduced costs and replacements less expensive (Cabraal et al, 2008, p.19). World Bank investment projects have over the years made impressive gains in improving electricity access specifically in developing countries. It’s estimated that majority of Bangladesh population both in rural and marginalized areas has no access to electricity. Poor household here are defined as people living in off-grid areas with low-income levels. Government programs in Bangladesh should in this case prioritize allocation of scarce resources. This is because unprivileged populations are found to be concentrated in the rural communities. However, the costs required to electrify this places vary significantly. Marginal areas have been without electricity for sometime since private organizations are unwilling to connect customers because if the inherent high costs installation and with lower tariffs. In re ality, private sectors prefer to concentrate on grid intensification due to lower cost per connection and easier to implement. Government projects are rarely off-grid decisions and its time they supported energy initiatives that would stimulate the growth of micro-enterprises that would benefit the economy. For these reasons, some off-grid projects have been neglected hence the need for World Bank sponsorship. The spatial-analysis of power line being plotted in Bangladesh is one of such example (Cabraal et al, 2008, p.4). Rural renewable electrification programs such as solar photovoltaic (PV) are increasingly becoming popular in developing countries as a means of providing alternative energy sources to rural poor population. PV technology varies significantly in design and implementation as well as its degree of success. Lorenzo and his colleagues (1994) argue that sustainability of this programs are widely successful with collective participation from the local government, donor f unding and the community. Solar photovoltaic tends to be a technical demonstration project and relies totally on funding from donor organizations and local governments. In this regard, World Bank projects aimed at mainstreaming sustainable development principles into development aspects, is projected as a primary donor for community sustainment. It mobilizes efforts from community, the government and private-sectors to improve coordination among environmental institutions both internationally and locally. World Bank projects have over the years been accredited with increasing the capacity of environmental issues and awareness of community on environmental issues by encouraging their active participation to monitor environmental quality. According to Yongxoue et al (2003), World Bank’s main objective is to â€Å"integrate the principles of sustainable development into country policies and programs and reverse the loss of environmental resources† (p.10). It’s quit e clear that access to energy solutions would incredibly improve Bangladesh’s welfare. According to Cabraal et al (2008) research, there are about 260 million rural household without access to electricity. It is evidenced that majority of these households reside in either dispersed or small villages far form the city centers. World Bank is therefore trying to bridge this gap by implementing projects that provide electricity to such neglected areas using technology options approaches such as solar photovoltaic that have attained commercial maturity over the past 15-20 years. Based on practical knowledge gathered from various literatures and international experience accumulated through the past and on going World Bank operations, World Bank’s unique projects offer basic design principles of project management and sound practices and prescribe solutions for success (Cabraal et al, 2008). Solar photovoltaic projects aimed at improving lives and livelihood opportunities hav e helped those who can not afford personal house connections. From the perspective of data gathered from various literatures, such technological applications increase the economic attractiveness of the community. Issues surrounding solar photovoltaic (PV) It’s evidenced that a station with 2kw capacity charged battery can serve up to 50 households. The only disadvantage is that the solar powered batteries can only serve people living near the station since the battery must be transported to and from the charging station once a week. On the other hand however, Barkat (2003) argues that â€Å"in some projects, quality systems were installed without providing for longer-term maintenance, which harmed the reputation of the project and technology† (p.6). Also,lack of donor funding and the inability to reach the off-grid areas due to poor infrastructure has always been a major obstacle in realizing rural solar electrification objective. Bangladesh management team on the othe r hand lacked awareness in decision making level. The country had not prioritized solar development plan and poor coordination among line agencies at local levels to foresee the project completion were evident. There were so many undergoing projects, but locals lacked understanding of the project activities and how it would benefit them. Locals assumed that the project only targeted long term impacts which made them less motivated and more concerned about short term direct impacts. This brought us to the conclusion that complex issues in developing countries require more practical solutions to solve the problem in the community in a short-term basis. Even though, solar energy projects have been stated as one of the Bangladesh’s national development plan priority, in fact, it’s shocking to realize that the country has given the project less priority since its implementation (Yongxoue et al, 2003, p.3). Sibanda and Mahbub (2003) states that World Bank acted as an adminis trator for the Global Partnership on Output-Based Aid (GPOBA) with grants of a total of $8.3 million to sponsor part of the costs for installation of Solar Home Systems (PV) and renewable energy mini-grids for poor households located in Bangladesh rural areas (p.2). The projects benefited more than 14,000 households and over 5000 small to medium enterprises. Some of the projects included irrigation pumps, poultry farms and as well as timber mills in the rural areas. The ongoing project is expected to enable majority of poor rural population and dispersed areas have access to affordable energy through the PV and mini-grid projects. Zafrul Islam as quoted in Sibanda and Mahbub (2003) states that the GPOBA projects will support the Government of Bangladesh’s goal to ensure that the entire country has access to electricity by 2021. 80% of Bangladesh’s population live in rural areas and are also the group most affected by a lack of sufficient electricity generation. These p rojects will help 140,000 more households gain access to affordable electricity (p.1). Sibanda and Mahbub (2003) continue that the proposed PV project will reduce PV installation costs benefiting off-grid areas. Mr. Islam Sharrif as quoted in Sibanda and Mahbub (2003) adds that our mission at IDCOL is to encourage private sector investment in energy and infrastructure projects,† said Mr. Islam Sharif, CEO of IDCOL. The output-based aid approach has an impressive track record to date because it helps low income households gain access to electricity and makes it attractive for the private sector to offer services to the poor (p.2). In his statement Mr. Islam Sharrif concluded that the amount paid by GPOBA was seen as an incentive for business in the country to offer services to the poor people and the World Bank out-put based approach will ensure that payments made go directly to the qualifying household access to PV installation (Sibanda and Mahbub, 2003, p.2). Since its establ ishment in 2003, GPOBA has sponsored various projects including education, infrastructure and health designed to create incentives for efficiency and long-term development projects. Bangladeshi government should play an active role by funding and inviting proposals from private sectors, rural energy fund and support such investments on qualifying bidders. In either case, the governments sound practice to subsidize a portion of the capital costs while the community and private sectors balances the investment costs and full cost of the operation and maintenance. The third approach calls for active participation of government-contracted projects or public utilities operating in marginalized areas. Here, the government takes full charge by regulating tariffs which is an equivalent to the lifeline tariff of rural grid customers. In other words, utility operator is provided a subsidy from a public source as part of capital operations and maintenance costs. This model is also evident in th e Philippines where the government funds its micro-operation projects. For Bangladesh case, World Bank project centered on off-grid SHS has enabled rural electrification. With regard to World Bank projects, the dealer aspect often incorporates micro-finance assistance, which deals with the initial high upfront costs (Cabraal et al, 2008, p.20). In this case, mobilization of both government and sponsoring agencies is required since off-grid electrification is difficult to implement. Persistence and efforts from the government in support of World Bank projects are very important in ensuring completion of the projects. Government commitment to revive subsidiary slack when external financing ends to ensure the completion of the project is also required. Alternative Views After extensive research, I realized that long-term sustainability of the project will depend on many factors either than just technology. First of all, Cabraal and his colleagues (2008) argue that Bangladesh will requi re effective prioritization and adequate planning to ensure implementation of technological solutions, infrastructure and financial are provided for long-term purposes. Drawing on World Bank’s experience in design and implementing off-grid electrification projects, rural electrification solar projects guidance and insights into fundamental design principles for sustainability and sound practices for effective decision-making in Bangladesh will an effective solution (Cabraal et al, 2008). Secondly, active participation of government-contracted projects or public utilities operating in marginalized areas. World Bank projects should incorporate micro-finance assistance to deal with the initial high upfront costs. It has often been argued that reduced capital costs subsequently improve affordability of capital-intensive off-grid technologies. Some countries oppose the off-grid technologies, encouraging further consumption of high fuel. The implementation of solar PV have simplifi ed energy solutions and enabled Bangladesh to build long-term relationship with its donors and subsidiaries hence reducing the share of costs attributed to management and overhead costs (Cabraal et al, 2008, p.20). To ensure the likelihood of sustainability of the projects, Cabraal and his colleagues (2008) argue that Bangladesh government should play a role of off-grid options by simplifying regulations, appointing competent and dedicated project management staff to foresee the completion of the project. Since the project is technology driven, the project should include cost effective analysis to determine the least-cost solutions and our technology choice will be based practical considerations. Deliverance mechanisms and consumer service for off-grid projects specifically rely on private sector participation in line with local realities which enable access to quality and affordable products and services in the long-term. In order to increase affordability, Sibanda and Mahbub (2003 ) argue that off-grid electrification project in the rural Bangladesh must include subsidiaries, low-cost energy options like PV for this instance, consumer financing and finally polices and business practice. Role of subsidiaries in this case would be to foresee the completion of grid-based rural electrification to off-grid areas that have poor and dispersed population. It has also been argued that technologies for decentralized service have the ability to configure individual units that have higher investment costs to low fuel and operating costs compared to fuel-based supply systems. In some cases, the resulting energy costs may be higher that what a potential customer is willing to pay and subsidiaries in this case help off-grid consumers afford the upfront costs of access (Sibanda and Mahbub, 2003, p.17). Subsidiaries provided by PV in World Bank projects in Bangladesh reflects wide variations of systems costs, government attitudes towards subsidiary support and willingness to pay levels. For example, the PV subsidiary projects known as the RERED include PV system size of 20-70 WP with approximately 12 % cost in subsidiary range. Subsidiary financing can be gained from micro-financial institutions, banks and leasing companies. Such arrangements can increase affordability by spreading first costs over several years. Therefore strong partnership between microfinance institutions and energy companies would facilitate fast off-grid lending programs (Cabraal et al, 2008, p.19). Implications on Education The main objective of PV electrification is to ensure potential productive applications are likely to be fruitful once the PV is built. For effective implementation, early identification of local participant for the PV project, assisting individuals in developing business plan and identifying financial modalities. Sometimes over optimisms evaluation of potential productive application may be impractical to implement since they do not indicate significant potent ial for utilization. Institutional and community application are also important to ensuring off-grid electrification come to its full potential. For example, community centers around at the projects areas such as hospitals and schools can voluntary give assistance by financing the projects. In a business model perspective, World Bank or donor-funded institutions that have offered critical mass of assistance for PV market packages are offered bidding where the highest bidder is given the right to sell the PV to local households at subsidized rates and even a contract to install the PV systems to selected institutions. An important feature of this model is that the project enables long term maintenance and services that meet specific service standards (Cabraal et al, 2008, p.16). Bangladesh government should be actively involved in decision making, planning and implementation of the program and in selection of the program objectives. Raising community awareness by offering education o n reasons to which the programs are being implemented, the actual benefits of the program and causes of any factors that contribute to their apparent success or lack of success should be highly prioritized. Comprehensive set of success criteria and a road map followed by program planners and implementers should be provided to ensure success of the PV program. Since off-grid projects that rely on private sector participation, Bangladeshi government should employ simplest technological solutions that commensurate with local realities and support donor initiatives to foresee the project success. Lack of education threatens the progress achieved by any development and jeopardizes the main objective of community development. Community members who are not acculturated to technology use must be provided with adequate training and encouraged to participate in development initiatives with the aim of increasing awareness. Community involvement in development initiatives should be incorporated right from the planning phase of development projects, to ensure that their positive impacts can be sustained in the long term. With this regard, Information on ongoing operations, maintenance and replacement costs, alongside national recycling programs must be made and education arrangements made to ensure safe disposal of hazardous waste. Subsidiaries for off-grid populations are often justified on social equity grounds, what Barnes and Halpern (2000) defines as their ability to help rural dwellers to attain a level of parity by extending infrastructure costs and lifelines tariffs. In market imperfection aspect, Barnes and Halpern (2000) states that â€Å"lack of adequate information regarding specific opportunities, true cost of service and unavailable long-term financing often slow down the already economic off-grid projects or those that are close to completion† (p.5). Therefore appropriate designed subsidiaries for off-grid electrification enables the completion of phy sical interventions to occur by providing the otherwise uninterested investors with financial incentives and support. Barnes and Halpern (2000) add that project management mechanisms that mostly target the economic projects of the needy societies are usually effective if they incorporate implementation program that work. For example, it’s considered more effective to subsidize the upfront costs to consumers or business costs in dispersed areas than operating costs (Cabraal et al, 2008, p.18). Conclusion Off-grid projects that rely on private sector participation should employ simplest delivery mechanisms that commensurate with local realities. Here, Bangladeshi government should seek assistance from service providers, assess risks involved, provide technical assistance and provide technical assistance where appropriate. Before project implementation, choice of technologies must be tested for practical considerations like availability of adequate resources, ease of operations and maintenance and access to spare parts. Also, data should be collected across various sectors that would be willing to use the services which would be factored into technology selection process. For PV for example, the govenement should cooperate with World Bank in providing data on energy consumption and income levels’ while the choice on appropriate technologies should be left to service provider with investment parameters to consider. The conception and implementation of the PV project must always be consistence with the overall rural lighting plan for Bangladeshi. In this regard, the project should steer clear of ad-hoc factors that may kill the come to completion. Within early its early assessment phase, the Bangladeshi government should pay highest priority to raising community awareness, involve and support donor initiatives to foresee the project success. Promotion programs and community meeting alongside national recycling programs must be made and education arran gements to ensure safe disposal of hazardous waste. References Anderson, D. (2001). Clean electricity from photovoltaic’s. London: Imperial College Press. Barkat, A. (2003). Rural Electrification and Poverty Reduction: Case of Bangladesh. Paper presented at Sustainable Rural Electrification in Developing Countries: Is It Possible?, International conference of NRECA International, 6, 1-3 Barnes, D. F., and Halpern, J. (2000).Subsidies and Sustainable Rural Energy  Services: Can We Create Incentives Without Distorting Markets? Washington, DC: World Bank Cabraal, A., Cosgrove, M., Schaeffer, L. (1996). Best Practices for Photovoltaic Household Electrification Programs. Asia Technical Department Series, 324, 1 Cabraal, A., Terrado, E., Mukherjee, I. (2008). Designing Sustainable Off-Grid Rural Electrification Projects: Principles and Practice. The Energy and Mining Sector Board, 2, 1-34 Energy and Mining Sector Board. (2007). Catalyzing Private Investment for a Low  Ã‚  Carb on Economy: WorldBank Group Progress on Renewable Energy and Energy Efficiency in Fiscal 2007. Washington, DC: World Bank. Lorenzo, E., Araujo, G., Zilles, R. (1994). Solar electricity: engineering of  photovoltaic systems. Spain: Barnes Noble. Lorenzo, E. (1994). Solar electricity: Engineering of photovoltaic systems. Prongesa. Reiche, K., Tenenbaum, B., Torres, C. (2006). Electrification and Regulation:  Principles and a Model Law. Energy and Mining Sector Board DiscussionPaper No. 18. Washington, DC: World Bank. Shive, J. N. (1959). Semiconductor devices. Van Nostrand Sibanda, J., Mahbub, M. (2003). World Bank-administered GPOBA and IDCOL help low-income households in Bangladesh access electricity. News Release, 10, 1-2 Smee, A. (1849). Electro-Biology: The Voltaic mechanism of man. London: Longman Press Wolf, M. (1976). Historical development of solar cells :25th power sources  symposium. C.E Backuss: IEEE Press Yongxue, C., Sunny, G., Giannelia, M., Hughes, A., Johnso n, A., Khoo, T. (2003). Identifying Best Practices in Information Technology Project Management. Organizational Development, 30, 1-22.

Tuesday, March 3, 2020

John Jacob Astor - Biography of Richest American

John Jacob Astor - Biography of Richest American John Jacob Astor was the wealthiest man in America in the early 19th century, and when he died in 1848 his fortune was estimated to be at least $20 million, an astounding sum for the time. Astor had arrived in America as a poor German immigrant, and his determination and business sense led him to eventually create a monopoly in the fur trade. He diversified into real estate in New York City, and his fortune increased as the city grew. Early Life John Jacob Astor was born on July 17, 1763 in the village of Waldorf, in Germany. His father was a butcher, and as a boy John Jacob would accompany him to jobs butchering cattle. While a teenager, Astor earned enough money at various jobs in Germany to enable him to relocate to London, where an older brother was living. He spent three years in England, learning the language and picking up any information he could about his ultimate destination, the North American colonies which were rebelling against Britain. In 1783, after the Treaty of Paris formally ended the Revolutionary War, Astor decided to sail to the young nation of the United States. Astor left England in November 1783, having bought musical instruments, seven flutes, which he intended to sell in America. His ship reached the mouth of the Chesapeake Bay in January 1784, but the ship became stuck in ice and it would be two months before it was safe for the passengers to land. Chance Encounter Led to Learning About the Fur Trade While languishing aboard ship, Astor met a fellow passenger who had traded for furs with the Indians in North America. Legend has it that Astor quizzed the man extensively on the details of fur trading, and by the time he set foot on American soil Astor had resolved to enter the fur business. John Jacob Astor eventually reached New York City, where another brother was living, in March 1784. By some accounts, he did enter the fur trade almost immediately and soon returned to London to sell a shipment of furs. By 1786 Astor had opened a small shop on Water Street in lower Manhattan, and throughout the 1790s he kept expanding his fur business. He was soon exporting furs to London and to China, which was emerging as a huge market for the pelts of American beavers. By 1800 it was estimated that Astor had amassed nearly a quarter of a million dollars, a considerable fortune for the time. Astors Business Continued to Grow After the Lewis and Clark Expedition returned from the Northwest in 1806 Astor realized he could expand into the vast territories of the Louisiana Purchase. And, it should be noted, the official reason for Lewis and Clarks voyage was to help the American fur trade expand. In 1808 Astor combined a number of his business interests into the American Fur Company. Astors company, with trading posts throughout the Midwest and Northwest, would monopolize the fur business for decades, at a time when beaver hats were considered the height of fashion in America and Europe. In 1811 Astor financed an expedition to the coast of Oregon, where his employees founded Fort Astoria, an outpost at the mouth of the Columbia River. It was the first permanent American settlement on the Pacific Coast, but it was destined to fail due to various hardships and the War of 1812. Fort Astoria eventually passed into British hands. While the war doomed Fort Astoria, Astor made money in the final year of the war by helping the United States government finance its operations. Later critics, including the legendary editor Horace Greeley, accused him of having profiteered in war bonds. Astor Accumulated Vast Real Estate Holdings In the first decade of the 19th century Astor had realized that New York City would continue to grow, and he began buying up real estate in Manhattan. He amassed vast property holdings in New York and the surrounding area. Astor would eventually be called the citys landlord. Having grown tired of the fur trade, and realizing it was too vulnerable to changes in fashion, Astor sold all his interests in the fur business in June 1834. He then concentrated on real estate, while also dabbling in philanthropy. Legacy of John Jacob Astor John Jacob Astor died, at the age of 84, in his house in New York City on March 29, 1848. He was by far the richest man in America. It was estimated that Astor had a fortune of at least $20 million, and he is generally considered the first American multimillionaire. Most of his fortune was left to his son William Backhouse Astor, who continued to administer the family business and philanthropic endeavors. John Jacob Astors will also included a bequest for a public library. The Astor Library was for many years an institution in New York City, and its collection became the foundation for the New York Public Library. A number of American towns were named for John Jacob Astor, including Astoria, Oregon, the site of Fort Astoria. New Yorkers know the Astor Place subway stop in lower Manhattan, and there is a neighborhood in the borough of Queens called Astoria. Perhaps the most famous instance of the Astor name is the Waldorf-Astoria Hotel. John Jacob Astors grandsons, who were feuding in the 1890s, opened two lavish hotels in New York City, the Astoria, named for the family, and the Waldorf, named for John Jacob Astors native village in Germany. The hotels, which were located at the present site of the Empire State Building, were later combined into the Waldorf-Astoria. The name lives on with the current Waldorf-Astoria on Park Avenue in New York City. Gratitude is expressed to the New York Public Library Digital Collections for the illustration of John Jacob Astor.

Saturday, February 15, 2020

Combating Employee Turnover Essay Example | Topics and Well Written Essays - 1000 words

Combating Employee Turnover - Essay Example This has been explained in the form of a model in the diagram below: Figure 1: Employee’s Turnover Model Source: (Allen, Bryant & Vardaman 2011) If an organization sees that employees are unhappy with the work environment and there are some factors that may start the cycle of Employee’s Turnover Model, then the organization should try to remove them from the environment. They may develop strategies that will improve the work environment, improve employee’s relationship with others in the organization and try to focus on individual characteristics of workers to make them happy. These strategies will ensure that the employee does not leave the organization. Another idea suggested by Allen et al. study is that the organization should conduct employee’s surveys at regular intervals and should develop evidence-based strategies based on the problems identified in these surveys to make sure that employee’s turnover is reduced and this can be an effective w ay to combat the problem of high turnover in the large corporations and organizations. (Allen, Bryant & Vardaman 2011) Another study done on 76 organizations concludes that employment benefits and effective retirement policies reduce the problem of employee turnover by almost 34%. The study’s rationale was that employee’s benefits and retirement programs are given to employees after their retirement. Since gratuity fund grows exponentially, so employees think that longer they will stay with the organization, the bigger gratuity or pension they will get. Hence, this motivates them not to quit the job. Therefore, organizations with effective employee’s benefits and retirements plan tend to retain workers for longer periods than organizations that do not focus on these programs. Another important finding of the research was that it takes almost $3000 to replace a work in mid-management position. Hence, if these $3000/worker are used in creating effective retirement and pension plans, then an organization is likely to retain its workers for longer periods (Sutton 2001). In a model developed (Darmna 2000), it was found that replacing the employees that are leaving the organization is quite expensive. Hence, organizations could use half the costs that are spent on recruiting new staff to appease or solving the problems of the leaving staff. They can use the same money to increase their wages or to reduce the de-motivation factors from the organization. This would improve the problem of high employee turnover because factors that were perturbing the employees are being removed from the environment and hygienic factors such as increased pay are being given to them. Hence, there is no reason for them to leave the organization. (Darmna 2000) Participative management is another technique to reduce the problem of high turnover. Participative management believes in the autocratic leadership. It is an approach that calls for management by objective. Her e the responsibility is delegated to workers who are then free to decide how they will go about doing their work. This kind of approach has been highly successful in staff retention and large MNCs are making use of this approach. The illustrious lists of organizations that use this approach are Unilever, Proctor and Gamble, Reckitt-Beckniser and Siemens. It was found that these organizations retain employees twice longer than any other company. One reason for this high retention rate is responsibility management and participative

Sunday, February 2, 2020

English Contemporary Historical Fictions Essay Example | Topics and Well Written Essays - 2750 words

English Contemporary Historical Fictions - Essay Example terary genre, Romance depicts a style of narrative verse or heroic prose that was very much used in Europe during the Middle Ages right up to the time of Renaissance. This literary genre includes passionate love stories which can be fiction or reality or it could be highly adventurous tales about heroic deeds and secret love by knights and passionate ladies. Good examples of Romances are – Shakespeare’s â€Å"Romeo and Juliet† and â€Å"The Tempest†. There are yet others who are of the opinion that it is a name that is given to the various languages and people associated with the Latin language. It is also described as –â€Å"A type of narrative fiction characterized by the fanciful, often idealistic, treatment of subject matter; love and adventure are often its principal themes. [. . .]à ® (Guerin et al. 326). The romantic period spans over the time during which Wordsworth and Coledridge (1798) lived to create wonderful Lyrical Ballads of love and adventure and goes right up to the time Charles Dickens career to 1832. (Holman 405) According to Guerin, Realism is the opposite of Romance, he says –â€Å"A manner of presentation in literature that stresses an accurate, perhaps even factual, treatment of subject matter. à  The emphasis is on the rational and probable, as opposed, for example, to the romantic† (Guerin et al. 326). Therefore we find that Romance is more fictional than realistic and depends largely on imaginary, fictitious and mysterious characters and settings. Romances as opposed to Realistic stories use passionate love and adventure as a base in writing novels and poetry. Sarah Dunant was born in 1950 and completed her education at Godolphin and Latymer School in Hammersmith, London. Her novel of â€Å"The Birth of Venus† (2003) is an inspiring tale of art, politics, danger and passion. She worked as an actress for some time and then became a novelist, critic and a broadcaster on BBC radio in 1974. She had won many awards for her writing which

Saturday, January 25, 2020

Abandoned Oil Wells End of Field Life

Abandoned Oil Wells End of Field Life ABSTRACT As petroleum, production continues to decline in many parts of the globe, more operators are seeing well abandonment as a reality. Drilled wells are plugged and abandoned for different reasons of which the typical and operational reason is that the well has reached its economic limit or when drilled it was found to be a dry hole. (refer). According to Ide, T., et al 2006, well bore is taken to be high fluid transmittal pathway. Even with the current procedure of sealing and abandonment, individual wells have the tendency to loose their integrity due to various factors, which include but not limited to poor cementation, poor or ineffective plugging, and increase in formation pressure after abandonment, corrosion of casing (refer). Safe and economical well abandonment are important to the industry from environmental and financial standpoints. Improper abandonment can require re-abandonment procedures to mitigate environmental contamination or to comply with updated regulations, causing an increased financial burden on the operator. 1. Introduction 1.1 BACKGROUND All wells drilled have a distinct life cycle with respect to its cost, duration, recovery, and value. Although these characteristics and attributes are specific to an individual drilled well, all producing wells pass through the same initial and final state, beginning with completion and ending with abandonment. After the drilling stage of a well and the target depth is reached, a decision to complete the well is made based on the reservoir attributes: is the well dry or is the hydrocarbon in place of economic value. Ultimately, every well becomes dormant because of reduced economic returns or technical problem. When a well stops producing, it either may be shut-in (SI), temporary abandoned (TA) or permanently abandoned (pa). With ageing fields fast approaching their economic limit, abandonment is becoming increasingly frequent and many operators have to modify their abandonment procedure to fit the Wellbore condition and make certain that abandoned wells remain permanently sealed and prevent commingling while balancing the environmental objectives of abandonment and cost of actual abandonment. Wells, which are not abandoned appropriately, can become a major hazard to the underground source of drinking water and possibly the aquatic environment [8] Shut in status (SI) When a well is shut-in it is still flowing but its Christmas tree, SV, wing valves are all closed. Usually a well is shut-in if there is a technical or operational problem, which is believed to be temporary. There is no maximum time for a well to remain in shut-in status as long as it is regularly maintained according to regulatory requirement and procedures. Temporary abandonment status (TA) A well is said to be temporarily abandoned when the wellhead is removed and the producing interval is isolated with a plug and the casing is plugged below the mud line. REASONS FOR ABANDONMENT There are various reasons why a well is abandoned, these are: END OF FIELD LIFE ABANDONMENT Drilled wells must at one point in time be abandoned. Before a well reaches the point at which it has to be abandoned it passes through various stages in its life cycle; it begins with the survey and exploitation of an area for signs on hydrocarbon [1]. This leads to a rewarding and exciting discovery of an accumulation of hydrocarbon deposit. This is followed by the acquired Data Processing stage and finally the drilling process. During drilling, the well is created by the use of drill bit and cased off at specific as drilling progresses. Another fulfilling target is reached when the first hydrocarbon is produced a process which unfortunately eventually proceeds the declining period where the rate of hydrocarbon production decreases. However, successful enhanced oil recovery techniques often than not make this stage rewarding financially as it extends the life of the well [1]. When all enhanced oil recovery technique has been employed, and the cost of producing the well is no longer economically viable, the next process is abandonment; a stage not so welcomed by most operators as it means the cessation of production. Dry hole Abandonment A drilled well is also abandoned when after drilling, the hole was found to be a dry hole. Though abandonment is meant to be a permanent termination, the effect is felt for many years more than that of the short producing life of the well. The main goal of any plugging and abandonment is to provide a permanent and effective isolation of fluids all along the subsurface formation in the different layers where they were enclosed prior to plugging, thereby preventing fluid migration and reduce environmental risks of contamination and prevent costly remedial jobs [1]. To achieve this several significant intervals of the well must be filled and tightly closed with a sealant material from bottom hole to the surface with special attention paid to the production interval [4] and zones of high differential pressure and temperature. The material used for plugging differ depending on what type of well is being abandoned, for oil and gas well the material used is normally cement based materials, for water well, cement based as well as bentonite can be used to isolate the different intervals[4][ PUT UNDER CEMENT PLUG CHARACTERISTICS UNDERE INTEGRITY OF ABANDONED WELLS. The integrity of the abandoned well can fail for very many reaso ns such as plug failure, poor slurry design etc. A cement plug can fail to set at the desired location as cement slurry often has the tendency to fall through the lighter drilling fluid below it [9]. Failure can also be as a result of downhole changes which may occur after the well has been abandoned [8]. Over the years, techniques for drilling and completion of hydrocarbon wells have continued to evolve. This drive for new technology for hydrocarbon recovery is due to the need to maximize hydrocarbon recovery while protecting the environment [4]. The evolution of well abandonment techniques has been much slower than that of drilling and completion. This is because abandonment is considered a sunk cost [4]. Project Objective The objectives of this thesis is to review the factors which contribute to the overall integrity of abandoned wells. These include, well parameters, cement placement techniques, casing integrity. These play an important role in the design, construction and actual execution of the abandonment project. In the abandonment of wells, the factors that contribute to the integrity differ depending on the wells. This is because each well is a unique entity and hence has to have independent well abandonment design. PROJECT METHODOLOGY In this work I intend to talk about For instance, in a well where a fish is lost in hole the abandonment design has to taken into consideration remedial action or ways to set the cement plug as there may be no access to the bottom hole to set a bottom plug in the sump. Abandoned wells can be a cause of concern due to their potential to act as path for flow between formations, which under normal circumstance are isolated including underground sources of drinking water, of great concern are those abandonments with faulty plugs, compromised casing and those having cracks in the cement [7]. This work is aimed at highlighting the different factors which contribute to the integrity of an abandoned well. ( reorder and rewrite) Chapter 2 Literature review Well abandonment has come a long way since the first discovery of oil and gas, with the increasing awareness of the importance of environmental protection, the need to improve the processes of abandonment has now become a major concern for many operators, as abandoned wells are considered a possible conduit for fluid flow between different formations. According to C. H. Kelm et al, the objective of abandonment of a well must taken into consideration the need to do so in a best practices manner by examining the following fundamental aim of any abandonment process; The need to protect any hydrocarbon left in the pay zone of the formation drilled. The need to preserve and prevent contamination of freshwater zones (for onshore rigs) penetrated during the course of drilling the well. Avert of any contamination of the surface environment. For instance, in the case of vegetation, air pollution and marine environment. The need to abide by all regulatory requirements stated in during the abandonment. In the past years many papers has been published on areas ranging from alternative plugging technique, self healing and expandable cement, improved cement slurry design, placement technique with the aim to reduce the cost of abandonment and improve the abandonment. Abandoned well in an oil field are sealed using a plugging material according to regulatory requirements. A perfect example of a plugging material in the ideal sense according to D.G Calvert et al 1994 is one, which can be pumped down the drilled hole, has the ability to harden in a reasonable time, and bond with the walls of the drilled formation and casing in order to prevent fluid flow from one formation to another. While regulations vary from place to place, the general practice involves plugging the Wellbore with a Portland cement material specifically designed for the isolation purpose. In his review of plugging and abandonment techniques, D. G. Calvert et al, stated that the cement mixture used in oil and gas vary d epending on the type of hole is to be isolated. Very few papers has been published that focuses on the integrity of the actual well after abandonment. Liversidge, D. et al. in his work on permanent plug and abandonment solution for the Northsea he presented case histories of the Brent South field abandonment project done using both class G cement with an expandable agent system and flexible cement according to the current stringent regulation. Cement integrity preservation during well completion, production phases as well as during abandonment is of critical importance for long-term protection. In the past years numerous papers and texts in the area of cement sheath failure, improved flexible and expanding cement and related topics have been published, indicating the increasing need to improve well abandonment and reduce cost. Examples of works published include but not limited to (Bosma et al 2000), (Ravi et al. 2002), (Glessner et al., 2005), (Mainguy et al., 2007), (D. G calvert et al., 1994), (Locolier et al., 2006),( Liversidge et al., 2006). Although many papers have been written, very little work has been done to investigate the cement plug integrity after abandonment. The ascribed cause to this may be that permanent abandonment is considered a non-profit venture. Mainguy M. et al., 2007 carried out an analysis of the probability of failure of cement plugs when subjected to varying compressive and tensile load using an ideal reservoir model designed to suit changes in the downhole condition. In his study he identified that there is a greater tendency for the material used to seal zones for abandonment to fail in wells situated where there is instability in the pressure, temperature and stress state due to changes that occur downhole. He concluded that when the plug is subjected to maximum tensile stress it failed due to the low tensile strength of the conventional class G cement. Though he suggested the use of pre-stressed cement as they adapt more to changes downhole, his work did not cover the problem of rock-cement de-bonding which is a problem that greatly reduces the sealing capacity of cement. In the study done by R.C. Smith et al., 1984, on the successful method of setting cement plug, he investigated the ongoing failures of cement plug s due to the instability caused by the difference between the density of the cement and the drilling mud. In his work, he suggested the use of mud thickened with bentonite before spotting the cement so as to allow a greater density difference. With respect to the problem of controlling the direction of flow of the cement slurry a diverter placed at the end of the tubing to help divert the direction of flow and improve stability. Drilling fluid can also be used as a plugging material by adding a cementitous additive. The additive can either be fly ash of blast furnace slag which have the characteristics of a cement as they harden when the mixed with water. Cement is not naturally occurring but manmade and like any other manmade material, it is expected to age, wear-off, and, degrade overtime under different subsurface condition, which may differ from the time it was initially set [W. Zhou et. al 2005]. Plugging oil well is a common operation, which is increasing as mature field reach the end of their producing life. In general, plugging and abandonment of a well involves filling a certain length of casing or open hole with a volume of cement mixture designed for it in order to provide adequate sealing against upward migration of formation fluid. After the cement plug is place in the desired location it is left to harden over time. The placement of the cement plug is a major part of abandonment, as failure of this will cause commingling of fluids from different formation. The setting and spotting of cement plugs can be done in various ways depending on the wellbore condition and regulatory requirement. A review of the worldwide acceptable plugging procedure shows the a minimum of three cement plugs is required of which two are, the first plug is put in place by squeezing the cement plug through the perforation into the former producing zone in order to seal off any further influx of reservoir fluid into the Wellbore[2]. The second plug is usually set towards the middle of the Wellbore or near a protective casing shoe. Finally the third plug is set about200- 300ft below the mud line. In general, the length of a plug ranges from 100to 200ft depending on the regulatory requirements. Any additional plug set is dependent on the well bore condition. Although observations and studies show that cement plugs have the ability to perform as expected for up to several decades, uncertainty exists that the material can maintain its isolation integrity for several thousands of years. Recent study shows that abandoned wells in which CO2 was used in the enhanced oil recovery technique prior to abandonment have the potential to leak and allow CO2 migration notwithstanding the fact that the well has been properly abandoned [Scherer, G.W et al, 2005]. This is mainly due to corrosion and degradation of the casing and cement. This degradation and corrosion occurs when carbonic acid formed from the dissolution of CO2 in brine attacks the cement and casing [Scherer, G.W et al, 2005] a process, which is dependent on the temperature of the formation, cement composition, brine and the rock mechanics and composition. Potential leakage of reservoir fluids through degraded cement plugs is hence of primary concern. Various work on inter-formational flow shows that there is still the possibility of flow between formations even with a successful plugging of different interval. This case can arise when the abandoned well is near an active well. Javandel et al developed the first analytical model; their model showed the possible of flow to an upper formation in response to a lower injection pressure build up in a lower formation. Striz and wiggings carried out further work by developing a coupled model to predict flow using a steady state approach to create a transient flow. This model can be used to developed abandoned fluid flow using available field data. In recent studies, statistics show that in the US one in every three well drilled for hydrocarbon is dry and have to be plugged and abandoned[D.G Calvert, et al 1994]. Wells are drilled for various reasons ranging from industrial, oil and gas, to municipal uses, but in the end these well have to be abandoned [D.G Calvert, et al 1994]. Some wells were abandoned before any regulation and guidelines were defined, these wells may have either been plugged improperly or not plugged at all and these now poses a threat to the quality of the groundwater. For the aim of regulating bodies to be achieved i.e. achieving underground water protect and hence environmental protect, the operating companies must understand that following the different regulatory requirement alone is not sufficient to guarantee a lasting protection of the environment [4]. It is sometimes difficult for operators to abide by the regulatory requirements as well as developing a plan which would both serve to seal off the reservoir and provide long-term protection of the environment while justifying the overall cost in general [4]. Currently there is a high rise in abandonment of ageing and mature field which either have reached their economic limit or are no longer producing (refer). Methods of ABANDONMENT The initial stage of a decommissioning process is the plugging and abandonment of the wells, during this stage, the tubing, casing strings, and, conductors are cut below the mud line and removed, zones are sealed with cement plug to isolate the flow path between the reservoir fluids and other zones as well as the surface. Zones not sealed with cement plug are filled with mud with fluid having the proper weight and consistency to prevent movement of other fluids into the wellbore. Most abandonments follow a general methodology that is adjusted to meet individual well requirements. As procedures can and do change significantly for each well, cement plug design should frequently be attuned to reach minimum wait-on-cement (WOC) times with varying downhole conditions. Near-wellbore geology should be assessed, and the wellbore and annuli properly cleaned to avoid microannuli and poor cement bonding. Traditional techniques include cement squeezes, gel squeezes, and mechanical plugs such as bridge plugs and packers. Cement and gel technologies are mainly used for behind casing repair, and mechanical options are usually confined to plugging the casing. In the general process of abandonment there as basic steps which are followed to ensure successful plug and abandonment program. This includes the planning process, wellbore equipment testing, designing, well geometry assessment. PA PLANNING The most essential decision after when to abandon a well [11] is how. Preparation is a key ingredient in plug and abandonment of a well. In order to abandon a well successfully careful planning and effective plugging and abandonment procedure is crucial to prevent gas or fluids from moving to the surface or to other subsurface formations. In addition to the environmental risks that come with poor seals, corrective plugging may be necessary, increasing the cost and difficulty of abandoning a well. However, operators and service companies have several options for obtaining complete, permanent abandonment. For every well, there is a variation as each well PA is unique and different. The techniques used to achieve this process are generally based on industry practice, research, and conformance with the relevant regulatory compliance requirement. The synthesis of practical knowledge, current technology and regulatory requirements results in the most effective wellbore plugging and abandonment possible. Wellbore equipment testing. A preliminary inspection and survey of the wellhead and wellbore condition is carried out to determine if the valves on the wellhead are in operable condition, if it is found not to be in operable condition they are hot-tapped. The wellbore is surveyed using a slickline unit to check for any obstructions in the well, to confirm measured depth and also to gauge the internal diameter of the tubing. After the survey and removal of the slickline, the annuli and tubing is filled with fluid using a well pump is installed at the wellhead to ascertain an injection rate into the perforations. The tubing and casing are also pressured up to check for integrity. Casing annuli are also pressure tested to check for communication problems between casing strings and to record the test pressure over a period of time. The integrity and reliability of the primary cement is assessed in order to ensure that the cement sheath is still providing isolation across the reservoir and the cap rock. A well control plan is designed to establish reservoir condition and subsequently the contingency responses to any event which may occur during the abandonment process. DESIGN OF A WELL ABANDONMENT PROGRAM Prior to plugging and abandoning a well, a review of the existing well design, record of past work, previous well performance and geologic and reservoir condition is carried out by the operator. The investigation of everything that may relate to the health and safety issues as well as regulatory requirements is also performed, after which the design of the abandonment program begins. The design is done based the existing wellbore and reservoir conditions depending on the findings from the review and investigation. This allows the operator to plan an abandonment program that will satisfy the goal of making the well safe from future resources. PA design needs to be integrated in the planning of the well, and should be considered in a single budget. There are many factors which must be put into consideration in order to design an effective abandonment program , such as, the reservoir status, the integrity of the primary cement, hole cleaning and cement placement technique, the temperatu re and pressure of the well, the type of fluid in the well, the age of the well, the status of the cap rock. Fluid Type Drilled wells produce fluids in liquid and gaseous form, wells which contain sour fluids i.e. sulphur rich would be expected to have accelerated corrosion rates and stress cracking depending on the age and wellbore construction, may impair the capacity to perform plug and abandonment, to mitigate this components which are corrosion resistant can be used. Reservoir status In the design of PA, it is necessary to consider the reservoir status concerning its stability, the current pressure and temperature, the pressure at the initial stages of well development and the permeability of the reservoir both horizontal and vertical. With the information, plug and abandonment is then designed to withstand the pressure of the well after finally reach equilibrium. Cap rock Status It is also necessary to take into consideration the cap rock status i.e. is it still impermeable, has production activities induced fracture or has weathering taken effect. Placing the Plugs After the design and planning of the abandonment program, calculations must be made to determine the amount of cement required and the number of wiper plugs needed to separate the cement plugs from the rest of the fluids. The use of wiper plugs enables the formation of a stable platform on which the cement can be set. A wiper plug is placed in the wellbore, and then a predetermined quantity of cement slurry is pumped on top of it. Because of its weight, the slurry becomes a driving force. The slurry falls to the bottom of the hole, pushing the wiper plug ahead of it and forcing existing air and produced fluids back into the formation. Another plug and perhaps a bit more cement finish the job. In most wells, where there is one permaeble zone, one plug and one volume of cement and the surface plug are all that is needed. In other wells, additional wiper plugs, additional cement slurry, and probably spacers of water or drilling fluid are used consecutively until all of the air and fluid is forced out into the formation, there is zilch pressure on the pipe, and it is apparent from the returns that the whole wellbore is appropriately sealed. The quantity and kind of spacer fluid that can be used is dependent on individual state regulations. The remaining casing at the top of the well is cut off 3 ft below ground level. Along with this general methodology, each region stipulates its own abandonment methods based on field conditions and local regulations as can be seen in the following examples. PA steps in Los Angeles Basin in as follows [12]: The abandonment program is prepared with the support of a qualified engineer. A schematic showing the current mechanical condition of the well is prepared. The geologic condition of the well, including the structure, faulting, and producing zones is assessed. The depth and position of cement plug that will cover the producing zones and any potable water zones if applicable is measured and verified. Choice of whether to use perforating or cavity shots is made. The casing is pressure tested after setting cement retainers. The different equipment required for the job is determined and assembled. Estimate of abandonment/re-abandonment costs is made. In contrast, the steps followed for the Hutton tension-leg platform (TLP) in the East Shetland Basin of the North Sea involved three phases [13]: Perform standalone wireline intervention. Perform drilling unit intervention to set the cement plugs after the first wireline plug has been set. Cut casing 10 ft below the seabed and recover casing stumps. Another abandonment performed in the North Sea followed a different procedure [14]: A permanent cement primary barrier placed immediately above the reservoir. A secondary barrier placed as a back-up to the first barrier. A third barrier then placed near the surface to isolate shallow water-bearing sands. Severed completion tubing and recover wellhead. In Western Canada, the traditional abandonment procedure of wells with casing vent flows included the following: The source of the casing vent flow is estimated or determined. If the source zone is shallower than the producing zone, the producing zone is abandoned. The source zone is perforated. Depending on the feed rate obtained at the estimated source depth, either a bradenhead or a retainer squeeze is performed. Retrievable tools are used as required. Typically, Class G cement with Calcium Chloride and some fluid-loss control is utilized. The slurry is placed and a static squeeze pressure of 7 MPa is attempted. As needed, cement is drilled out and perforations are tested for seal. Often, several attempts are made in order to obtain a static squeeze pressure of 7 Mpa on surface or mitigate the casing vent flow. Techniques for Abandonment The techniques used for plugging and abandonment of drilled well worldwide are generally based on industry practise. These techniques include; Rig Coil tubing unit Rigless abandonment COIL TUBING UNIT The flexibility of coiled tubing has recently been tailored to develop rigless abandonment [15,16]. This method, focuses on harmonizing all well services to accomplish utmost efficiency. Coiled-tubing unit [fig.] abandonment, like any other method, is more effective when appropriate cementing procedure is used from the kick-off of the well, from original zonal isolation with the primary cement sheath to plugging and abandonment. Early prevention of microannulus can help operators obtain a complete final seal. Five main criteria are recommended for optimal abandonment performance with coiled tubing: Mobility; All equipment should be mounted on wheels for increased mobility. Self-sufficiency; the service company provides nearly all activities. Dry location; Fluids are not drained on or near the wellsite. Single operation; the job is completed in one visit to the wellsite. Low mileage; Move time is reduced and transport optimized for maximum efficiency in unit and camp moves. In this abandonment technique geological consideration like the type and condition of the reservoir and caprock formations are take into account. Permanent seals typically must be made between producing zones and at impermeable caprock formations. The condition and configuration of cement, perforations, tubulars, and downhole equipment are also considered. In addition to providing complete, permanent seals, the use of coiled-tubing can help increase abandonment efficiency. This method can provide the following advantages: Increased tripping speeds Increased rig-move efficiency Precise placement of cement plugs; exact spotting of plugs at the interval of interest even in deep well as coil tubing can be reciprocated while pumping. Suitable for use on live wells; it is possible to run CTU for remedial cement squeeze in live well as the wellbore can be controlled using the BOP and stripper assembly. No need to pull production tubing; existing tubing and wellheads do not have to be removed to access the producing interval. Success using the coil tubing method has been recorded in Oman. REGULATORY REQUIREMENT FOR ABANDONMENT IN THE NORTHSEA AND USA In the early years on the oil and gas industry, many wells were drilled and some were found to be dry and subsequently were abandoned without much consideration given to the manner in which the wells were abandoned. Sometimes tree stumps were thrown in the well as a means to plug it [3], during this era the preservation of the groundwater, in general, the environment was not a major issue, and there was no defined regulation by the oil states or agencies. During the tail end of the 1930s different states and agencies in the US started establishing regulations, this defined requirement to ensure better well abandonment [D.G Calvert, et al 1994]. The number of regulation guiding well abandonment has risen along with the rising need to protect the environment in countries around the world. Today most countries have some form of regulation that addresses well abandonment requirement; though these regulations are not uniform and differ from country to country and body to body, they provide a minimum standard for operating companies. For instance for the state of California in the United States of America, the different governing bodies have their own regulations which are as follows; Minerals Management Services (MMS): The basic plugging requirements are found in 30 CFR 250.110 Subpart G. Department of Conservation, Division of Oil: Gas, and Geothermal Resources (DOC) The California Code of Regulations Title 14 Division 2, Chapter 4 beginning with Section 1745 focuses on the fundamental plugging requirements. California State Lands Commission (CSLC): The fundamental plugging requirements in the California Code of Regulations Title 2 Section 2128(q). Abandonment in the North Sea In the North Sea as in US, the regulations differ. The different countries that make up the North Sea have their different governing bodies and subsequently different regulation. The law in the UK, Norway, Denmark and Holland holds the last operator of a well accountable and responsible to pay for all the cost incurred in permanently abandoning the well. It also holds them accountable for any leakage and any clean up that may be required in the event of a leak. Abandonment programs in the Northsea are designed to meet the guidelines for abandonment issued by the operation association or government. For the UK sector of the north sea, abandonment guidelines is issued by the UKOOA, similarly for the Norwegian sector the guidelines are contained in the NORSOK/PTIL D-010 standard and for the Netherlands it is contained in the Dutch Mining Abandoned Oil Wells End of Field Life Abandoned Oil Wells End of Field Life ABSTRACT As petroleum, production continues to decline in many parts of the globe, more operators are seeing well abandonment as a reality. Drilled wells are plugged and abandoned for different reasons of which the typical and operational reason is that the well has reached its economic limit or when drilled it was found to be a dry hole. (refer). According to Ide, T., et al 2006, well bore is taken to be high fluid transmittal pathway. Even with the current procedure of sealing and abandonment, individual wells have the tendency to loose their integrity due to various factors, which include but not limited to poor cementation, poor or ineffective plugging, and increase in formation pressure after abandonment, corrosion of casing (refer). Safe and economical well abandonment are important to the industry from environmental and financial standpoints. Improper abandonment can require re-abandonment procedures to mitigate environmental contamination or to comply with updated regulations, causing an increased financial burden on the operator. 1. Introduction 1.1 BACKGROUND All wells drilled have a distinct life cycle with respect to its cost, duration, recovery, and value. Although these characteristics and attributes are specific to an individual drilled well, all producing wells pass through the same initial and final state, beginning with completion and ending with abandonment. After the drilling stage of a well and the target depth is reached, a decision to complete the well is made based on the reservoir attributes: is the well dry or is the hydrocarbon in place of economic value. Ultimately, every well becomes dormant because of reduced economic returns or technical problem. When a well stops producing, it either may be shut-in (SI), temporary abandoned (TA) or permanently abandoned (pa). With ageing fields fast approaching their economic limit, abandonment is becoming increasingly frequent and many operators have to modify their abandonment procedure to fit the Wellbore condition and make certain that abandoned wells remain permanently sealed and prevent commingling while balancing the environmental objectives of abandonment and cost of actual abandonment. Wells, which are not abandoned appropriately, can become a major hazard to the underground source of drinking water and possibly the aquatic environment [8] Shut in status (SI) When a well is shut-in it is still flowing but its Christmas tree, SV, wing valves are all closed. Usually a well is shut-in if there is a technical or operational problem, which is believed to be temporary. There is no maximum time for a well to remain in shut-in status as long as it is regularly maintained according to regulatory requirement and procedures. Temporary abandonment status (TA) A well is said to be temporarily abandoned when the wellhead is removed and the producing interval is isolated with a plug and the casing is plugged below the mud line. REASONS FOR ABANDONMENT There are various reasons why a well is abandoned, these are: END OF FIELD LIFE ABANDONMENT Drilled wells must at one point in time be abandoned. Before a well reaches the point at which it has to be abandoned it passes through various stages in its life cycle; it begins with the survey and exploitation of an area for signs on hydrocarbon [1]. This leads to a rewarding and exciting discovery of an accumulation of hydrocarbon deposit. This is followed by the acquired Data Processing stage and finally the drilling process. During drilling, the well is created by the use of drill bit and cased off at specific as drilling progresses. Another fulfilling target is reached when the first hydrocarbon is produced a process which unfortunately eventually proceeds the declining period where the rate of hydrocarbon production decreases. However, successful enhanced oil recovery techniques often than not make this stage rewarding financially as it extends the life of the well [1]. When all enhanced oil recovery technique has been employed, and the cost of producing the well is no longer economically viable, the next process is abandonment; a stage not so welcomed by most operators as it means the cessation of production. Dry hole Abandonment A drilled well is also abandoned when after drilling, the hole was found to be a dry hole. Though abandonment is meant to be a permanent termination, the effect is felt for many years more than that of the short producing life of the well. The main goal of any plugging and abandonment is to provide a permanent and effective isolation of fluids all along the subsurface formation in the different layers where they were enclosed prior to plugging, thereby preventing fluid migration and reduce environmental risks of contamination and prevent costly remedial jobs [1]. To achieve this several significant intervals of the well must be filled and tightly closed with a sealant material from bottom hole to the surface with special attention paid to the production interval [4] and zones of high differential pressure and temperature. The material used for plugging differ depending on what type of well is being abandoned, for oil and gas well the material used is normally cement based materials, for water well, cement based as well as bentonite can be used to isolate the different intervals[4][ PUT UNDER CEMENT PLUG CHARACTERISTICS UNDERE INTEGRITY OF ABANDONED WELLS. The integrity of the abandoned well can fail for very many reaso ns such as plug failure, poor slurry design etc. A cement plug can fail to set at the desired location as cement slurry often has the tendency to fall through the lighter drilling fluid below it [9]. Failure can also be as a result of downhole changes which may occur after the well has been abandoned [8]. Over the years, techniques for drilling and completion of hydrocarbon wells have continued to evolve. This drive for new technology for hydrocarbon recovery is due to the need to maximize hydrocarbon recovery while protecting the environment [4]. The evolution of well abandonment techniques has been much slower than that of drilling and completion. This is because abandonment is considered a sunk cost [4]. Project Objective The objectives of this thesis is to review the factors which contribute to the overall integrity of abandoned wells. These include, well parameters, cement placement techniques, casing integrity. These play an important role in the design, construction and actual execution of the abandonment project. In the abandonment of wells, the factors that contribute to the integrity differ depending on the wells. This is because each well is a unique entity and hence has to have independent well abandonment design. PROJECT METHODOLOGY In this work I intend to talk about For instance, in a well where a fish is lost in hole the abandonment design has to taken into consideration remedial action or ways to set the cement plug as there may be no access to the bottom hole to set a bottom plug in the sump. Abandoned wells can be a cause of concern due to their potential to act as path for flow between formations, which under normal circumstance are isolated including underground sources of drinking water, of great concern are those abandonments with faulty plugs, compromised casing and those having cracks in the cement [7]. This work is aimed at highlighting the different factors which contribute to the integrity of an abandoned well. ( reorder and rewrite) Chapter 2 Literature review Well abandonment has come a long way since the first discovery of oil and gas, with the increasing awareness of the importance of environmental protection, the need to improve the processes of abandonment has now become a major concern for many operators, as abandoned wells are considered a possible conduit for fluid flow between different formations. According to C. H. Kelm et al, the objective of abandonment of a well must taken into consideration the need to do so in a best practices manner by examining the following fundamental aim of any abandonment process; The need to protect any hydrocarbon left in the pay zone of the formation drilled. The need to preserve and prevent contamination of freshwater zones (for onshore rigs) penetrated during the course of drilling the well. Avert of any contamination of the surface environment. For instance, in the case of vegetation, air pollution and marine environment. The need to abide by all regulatory requirements stated in during the abandonment. In the past years many papers has been published on areas ranging from alternative plugging technique, self healing and expandable cement, improved cement slurry design, placement technique with the aim to reduce the cost of abandonment and improve the abandonment. Abandoned well in an oil field are sealed using a plugging material according to regulatory requirements. A perfect example of a plugging material in the ideal sense according to D.G Calvert et al 1994 is one, which can be pumped down the drilled hole, has the ability to harden in a reasonable time, and bond with the walls of the drilled formation and casing in order to prevent fluid flow from one formation to another. While regulations vary from place to place, the general practice involves plugging the Wellbore with a Portland cement material specifically designed for the isolation purpose. In his review of plugging and abandonment techniques, D. G. Calvert et al, stated that the cement mixture used in oil and gas vary d epending on the type of hole is to be isolated. Very few papers has been published that focuses on the integrity of the actual well after abandonment. Liversidge, D. et al. in his work on permanent plug and abandonment solution for the Northsea he presented case histories of the Brent South field abandonment project done using both class G cement with an expandable agent system and flexible cement according to the current stringent regulation. Cement integrity preservation during well completion, production phases as well as during abandonment is of critical importance for long-term protection. In the past years numerous papers and texts in the area of cement sheath failure, improved flexible and expanding cement and related topics have been published, indicating the increasing need to improve well abandonment and reduce cost. Examples of works published include but not limited to (Bosma et al 2000), (Ravi et al. 2002), (Glessner et al., 2005), (Mainguy et al., 2007), (D. G calvert et al., 1994), (Locolier et al., 2006),( Liversidge et al., 2006). Although many papers have been written, very little work has been done to investigate the cement plug integrity after abandonment. The ascribed cause to this may be that permanent abandonment is considered a non-profit venture. Mainguy M. et al., 2007 carried out an analysis of the probability of failure of cement plugs when subjected to varying compressive and tensile load using an ideal reservoir model designed to suit changes in the downhole condition. In his study he identified that there is a greater tendency for the material used to seal zones for abandonment to fail in wells situated where there is instability in the pressure, temperature and stress state due to changes that occur downhole. He concluded that when the plug is subjected to maximum tensile stress it failed due to the low tensile strength of the conventional class G cement. Though he suggested the use of pre-stressed cement as they adapt more to changes downhole, his work did not cover the problem of rock-cement de-bonding which is a problem that greatly reduces the sealing capacity of cement. In the study done by R.C. Smith et al., 1984, on the successful method of setting cement plug, he investigated the ongoing failures of cement plug s due to the instability caused by the difference between the density of the cement and the drilling mud. In his work, he suggested the use of mud thickened with bentonite before spotting the cement so as to allow a greater density difference. With respect to the problem of controlling the direction of flow of the cement slurry a diverter placed at the end of the tubing to help divert the direction of flow and improve stability. Drilling fluid can also be used as a plugging material by adding a cementitous additive. The additive can either be fly ash of blast furnace slag which have the characteristics of a cement as they harden when the mixed with water. Cement is not naturally occurring but manmade and like any other manmade material, it is expected to age, wear-off, and, degrade overtime under different subsurface condition, which may differ from the time it was initially set [W. Zhou et. al 2005]. Plugging oil well is a common operation, which is increasing as mature field reach the end of their producing life. In general, plugging and abandonment of a well involves filling a certain length of casing or open hole with a volume of cement mixture designed for it in order to provide adequate sealing against upward migration of formation fluid. After the cement plug is place in the desired location it is left to harden over time. The placement of the cement plug is a major part of abandonment, as failure of this will cause commingling of fluids from different formation. The setting and spotting of cement plugs can be done in various ways depending on the wellbore condition and regulatory requirement. A review of the worldwide acceptable plugging procedure shows the a minimum of three cement plugs is required of which two are, the first plug is put in place by squeezing the cement plug through the perforation into the former producing zone in order to seal off any further influx of reservoir fluid into the Wellbore[2]. The second plug is usually set towards the middle of the Wellbore or near a protective casing shoe. Finally the third plug is set about200- 300ft below the mud line. In general, the length of a plug ranges from 100to 200ft depending on the regulatory requirements. Any additional plug set is dependent on the well bore condition. Although observations and studies show that cement plugs have the ability to perform as expected for up to several decades, uncertainty exists that the material can maintain its isolation integrity for several thousands of years. Recent study shows that abandoned wells in which CO2 was used in the enhanced oil recovery technique prior to abandonment have the potential to leak and allow CO2 migration notwithstanding the fact that the well has been properly abandoned [Scherer, G.W et al, 2005]. This is mainly due to corrosion and degradation of the casing and cement. This degradation and corrosion occurs when carbonic acid formed from the dissolution of CO2 in brine attacks the cement and casing [Scherer, G.W et al, 2005] a process, which is dependent on the temperature of the formation, cement composition, brine and the rock mechanics and composition. Potential leakage of reservoir fluids through degraded cement plugs is hence of primary concern. Various work on inter-formational flow shows that there is still the possibility of flow between formations even with a successful plugging of different interval. This case can arise when the abandoned well is near an active well. Javandel et al developed the first analytical model; their model showed the possible of flow to an upper formation in response to a lower injection pressure build up in a lower formation. Striz and wiggings carried out further work by developing a coupled model to predict flow using a steady state approach to create a transient flow. This model can be used to developed abandoned fluid flow using available field data. In recent studies, statistics show that in the US one in every three well drilled for hydrocarbon is dry and have to be plugged and abandoned[D.G Calvert, et al 1994]. Wells are drilled for various reasons ranging from industrial, oil and gas, to municipal uses, but in the end these well have to be abandoned [D.G Calvert, et al 1994]. Some wells were abandoned before any regulation and guidelines were defined, these wells may have either been plugged improperly or not plugged at all and these now poses a threat to the quality of the groundwater. For the aim of regulating bodies to be achieved i.e. achieving underground water protect and hence environmental protect, the operating companies must understand that following the different regulatory requirement alone is not sufficient to guarantee a lasting protection of the environment [4]. It is sometimes difficult for operators to abide by the regulatory requirements as well as developing a plan which would both serve to seal off the reservoir and provide long-term protection of the environment while justifying the overall cost in general [4]. Currently there is a high rise in abandonment of ageing and mature field which either have reached their economic limit or are no longer producing (refer). Methods of ABANDONMENT The initial stage of a decommissioning process is the plugging and abandonment of the wells, during this stage, the tubing, casing strings, and, conductors are cut below the mud line and removed, zones are sealed with cement plug to isolate the flow path between the reservoir fluids and other zones as well as the surface. Zones not sealed with cement plug are filled with mud with fluid having the proper weight and consistency to prevent movement of other fluids into the wellbore. Most abandonments follow a general methodology that is adjusted to meet individual well requirements. As procedures can and do change significantly for each well, cement plug design should frequently be attuned to reach minimum wait-on-cement (WOC) times with varying downhole conditions. Near-wellbore geology should be assessed, and the wellbore and annuli properly cleaned to avoid microannuli and poor cement bonding. Traditional techniques include cement squeezes, gel squeezes, and mechanical plugs such as bridge plugs and packers. Cement and gel technologies are mainly used for behind casing repair, and mechanical options are usually confined to plugging the casing. In the general process of abandonment there as basic steps which are followed to ensure successful plug and abandonment program. This includes the planning process, wellbore equipment testing, designing, well geometry assessment. PA PLANNING The most essential decision after when to abandon a well [11] is how. Preparation is a key ingredient in plug and abandonment of a well. In order to abandon a well successfully careful planning and effective plugging and abandonment procedure is crucial to prevent gas or fluids from moving to the surface or to other subsurface formations. In addition to the environmental risks that come with poor seals, corrective plugging may be necessary, increasing the cost and difficulty of abandoning a well. However, operators and service companies have several options for obtaining complete, permanent abandonment. For every well, there is a variation as each well PA is unique and different. The techniques used to achieve this process are generally based on industry practice, research, and conformance with the relevant regulatory compliance requirement. The synthesis of practical knowledge, current technology and regulatory requirements results in the most effective wellbore plugging and abandonment possible. Wellbore equipment testing. A preliminary inspection and survey of the wellhead and wellbore condition is carried out to determine if the valves on the wellhead are in operable condition, if it is found not to be in operable condition they are hot-tapped. The wellbore is surveyed using a slickline unit to check for any obstructions in the well, to confirm measured depth and also to gauge the internal diameter of the tubing. After the survey and removal of the slickline, the annuli and tubing is filled with fluid using a well pump is installed at the wellhead to ascertain an injection rate into the perforations. The tubing and casing are also pressured up to check for integrity. Casing annuli are also pressure tested to check for communication problems between casing strings and to record the test pressure over a period of time. The integrity and reliability of the primary cement is assessed in order to ensure that the cement sheath is still providing isolation across the reservoir and the cap rock. A well control plan is designed to establish reservoir condition and subsequently the contingency responses to any event which may occur during the abandonment process. DESIGN OF A WELL ABANDONMENT PROGRAM Prior to plugging and abandoning a well, a review of the existing well design, record of past work, previous well performance and geologic and reservoir condition is carried out by the operator. The investigation of everything that may relate to the health and safety issues as well as regulatory requirements is also performed, after which the design of the abandonment program begins. The design is done based the existing wellbore and reservoir conditions depending on the findings from the review and investigation. This allows the operator to plan an abandonment program that will satisfy the goal of making the well safe from future resources. PA design needs to be integrated in the planning of the well, and should be considered in a single budget. There are many factors which must be put into consideration in order to design an effective abandonment program , such as, the reservoir status, the integrity of the primary cement, hole cleaning and cement placement technique, the temperatu re and pressure of the well, the type of fluid in the well, the age of the well, the status of the cap rock. Fluid Type Drilled wells produce fluids in liquid and gaseous form, wells which contain sour fluids i.e. sulphur rich would be expected to have accelerated corrosion rates and stress cracking depending on the age and wellbore construction, may impair the capacity to perform plug and abandonment, to mitigate this components which are corrosion resistant can be used. Reservoir status In the design of PA, it is necessary to consider the reservoir status concerning its stability, the current pressure and temperature, the pressure at the initial stages of well development and the permeability of the reservoir both horizontal and vertical. With the information, plug and abandonment is then designed to withstand the pressure of the well after finally reach equilibrium. Cap rock Status It is also necessary to take into consideration the cap rock status i.e. is it still impermeable, has production activities induced fracture or has weathering taken effect. Placing the Plugs After the design and planning of the abandonment program, calculations must be made to determine the amount of cement required and the number of wiper plugs needed to separate the cement plugs from the rest of the fluids. The use of wiper plugs enables the formation of a stable platform on which the cement can be set. A wiper plug is placed in the wellbore, and then a predetermined quantity of cement slurry is pumped on top of it. Because of its weight, the slurry becomes a driving force. The slurry falls to the bottom of the hole, pushing the wiper plug ahead of it and forcing existing air and produced fluids back into the formation. Another plug and perhaps a bit more cement finish the job. In most wells, where there is one permaeble zone, one plug and one volume of cement and the surface plug are all that is needed. In other wells, additional wiper plugs, additional cement slurry, and probably spacers of water or drilling fluid are used consecutively until all of the air and fluid is forced out into the formation, there is zilch pressure on the pipe, and it is apparent from the returns that the whole wellbore is appropriately sealed. The quantity and kind of spacer fluid that can be used is dependent on individual state regulations. The remaining casing at the top of the well is cut off 3 ft below ground level. Along with this general methodology, each region stipulates its own abandonment methods based on field conditions and local regulations as can be seen in the following examples. PA steps in Los Angeles Basin in as follows [12]: The abandonment program is prepared with the support of a qualified engineer. A schematic showing the current mechanical condition of the well is prepared. The geologic condition of the well, including the structure, faulting, and producing zones is assessed. The depth and position of cement plug that will cover the producing zones and any potable water zones if applicable is measured and verified. Choice of whether to use perforating or cavity shots is made. The casing is pressure tested after setting cement retainers. The different equipment required for the job is determined and assembled. Estimate of abandonment/re-abandonment costs is made. In contrast, the steps followed for the Hutton tension-leg platform (TLP) in the East Shetland Basin of the North Sea involved three phases [13]: Perform standalone wireline intervention. Perform drilling unit intervention to set the cement plugs after the first wireline plug has been set. Cut casing 10 ft below the seabed and recover casing stumps. Another abandonment performed in the North Sea followed a different procedure [14]: A permanent cement primary barrier placed immediately above the reservoir. A secondary barrier placed as a back-up to the first barrier. A third barrier then placed near the surface to isolate shallow water-bearing sands. Severed completion tubing and recover wellhead. In Western Canada, the traditional abandonment procedure of wells with casing vent flows included the following: The source of the casing vent flow is estimated or determined. If the source zone is shallower than the producing zone, the producing zone is abandoned. The source zone is perforated. Depending on the feed rate obtained at the estimated source depth, either a bradenhead or a retainer squeeze is performed. Retrievable tools are used as required. Typically, Class G cement with Calcium Chloride and some fluid-loss control is utilized. The slurry is placed and a static squeeze pressure of 7 MPa is attempted. As needed, cement is drilled out and perforations are tested for seal. Often, several attempts are made in order to obtain a static squeeze pressure of 7 Mpa on surface or mitigate the casing vent flow. Techniques for Abandonment The techniques used for plugging and abandonment of drilled well worldwide are generally based on industry practise. These techniques include; Rig Coil tubing unit Rigless abandonment COIL TUBING UNIT The flexibility of coiled tubing has recently been tailored to develop rigless abandonment [15,16]. This method, focuses on harmonizing all well services to accomplish utmost efficiency. Coiled-tubing unit [fig.] abandonment, like any other method, is more effective when appropriate cementing procedure is used from the kick-off of the well, from original zonal isolation with the primary cement sheath to plugging and abandonment. Early prevention of microannulus can help operators obtain a complete final seal. Five main criteria are recommended for optimal abandonment performance with coiled tubing: Mobility; All equipment should be mounted on wheels for increased mobility. Self-sufficiency; the service company provides nearly all activities. Dry location; Fluids are not drained on or near the wellsite. Single operation; the job is completed in one visit to the wellsite. Low mileage; Move time is reduced and transport optimized for maximum efficiency in unit and camp moves. In this abandonment technique geological consideration like the type and condition of the reservoir and caprock formations are take into account. Permanent seals typically must be made between producing zones and at impermeable caprock formations. The condition and configuration of cement, perforations, tubulars, and downhole equipment are also considered. In addition to providing complete, permanent seals, the use of coiled-tubing can help increase abandonment efficiency. This method can provide the following advantages: Increased tripping speeds Increased rig-move efficiency Precise placement of cement plugs; exact spotting of plugs at the interval of interest even in deep well as coil tubing can be reciprocated while pumping. Suitable for use on live wells; it is possible to run CTU for remedial cement squeeze in live well as the wellbore can be controlled using the BOP and stripper assembly. No need to pull production tubing; existing tubing and wellheads do not have to be removed to access the producing interval. Success using the coil tubing method has been recorded in Oman. REGULATORY REQUIREMENT FOR ABANDONMENT IN THE NORTHSEA AND USA In the early years on the oil and gas industry, many wells were drilled and some were found to be dry and subsequently were abandoned without much consideration given to the manner in which the wells were abandoned. Sometimes tree stumps were thrown in the well as a means to plug it [3], during this era the preservation of the groundwater, in general, the environment was not a major issue, and there was no defined regulation by the oil states or agencies. During the tail end of the 1930s different states and agencies in the US started establishing regulations, this defined requirement to ensure better well abandonment [D.G Calvert, et al 1994]. The number of regulation guiding well abandonment has risen along with the rising need to protect the environment in countries around the world. Today most countries have some form of regulation that addresses well abandonment requirement; though these regulations are not uniform and differ from country to country and body to body, they provide a minimum standard for operating companies. For instance for the state of California in the United States of America, the different governing bodies have their own regulations which are as follows; Minerals Management Services (MMS): The basic plugging requirements are found in 30 CFR 250.110 Subpart G. Department of Conservation, Division of Oil: Gas, and Geothermal Resources (DOC) The California Code of Regulations Title 14 Division 2, Chapter 4 beginning with Section 1745 focuses on the fundamental plugging requirements. California State Lands Commission (CSLC): The fundamental plugging requirements in the California Code of Regulations Title 2 Section 2128(q). Abandonment in the North Sea In the North Sea as in US, the regulations differ. The different countries that make up the North Sea have their different governing bodies and subsequently different regulation. The law in the UK, Norway, Denmark and Holland holds the last operator of a well accountable and responsible to pay for all the cost incurred in permanently abandoning the well. It also holds them accountable for any leakage and any clean up that may be required in the event of a leak. Abandonment programs in the Northsea are designed to meet the guidelines for abandonment issued by the operation association or government. For the UK sector of the north sea, abandonment guidelines is issued by the UKOOA, similarly for the Norwegian sector the guidelines are contained in the NORSOK/PTIL D-010 standard and for the Netherlands it is contained in the Dutch Mining

Friday, January 17, 2020

Food waste Essay

FOOD WASTE Fresh vegetables, ready-to-cook meals, and cheap meat is what a modern consumer’s supposed grocery list comprises of! Dump it all into your fridge full of deals, discount offers and feel happy. This is how the shop keeper gets a loyal customer. At the end o the story, it’s the food industry’s creed that the customer is always right†¦.. If food became it s own pungent country, it would be the world’s third biggest contributor to climatic changes. According to United Nations Food and Agriculture Organization, one-third of the world’s total food is wasted around the world, literally to fork direct from the farm. In West, most of the food waste occurs because usually the leftover ingredients are tossed out. The major reason for food wastage is that the harvest of a farmer does not meet the retailer’s specific demand. Considering tomatoes, if too small or even too big to be sold to retailer will be left to rot in fields. Whilst, in developing countries the scenario is a little different because the food rots between fields and markets due to shortage of storage capacity. Awareness campaigns regarding food waste have already begun in the Western part of the world. Organizations are educating people about the waste of food at household level and how can it be eliminated or reduced to an extent. This is just the bit of the whole chunk. Even supermarkets are playing their part by producing recipes to use leftover food and pamphlets to store your food in the best possible manner. Likewise, many grocery stores have initiated redistribution of unsold stocks and excess to charitable organizations. Looking at food waste in local context, Pakistan is also the culprit for this wastage in spite of the fact that underfeeding and food shortage are areas of serious concern. Although we produce adequate food for our nation but still the wastage level is at its peak. This is because of careless attitude of our state and our society’s love for excess food. When we talk about consumption of food, negligence by society also needs to be tackled. At social events as well as weddings, it is quite usual for people to pile up a mountain of food on their plates and eat just a portion of it as if this is the last time they  are eating food. Much is needed to done to store perishable items such as fruits and vegetables. State needs to look into this matter with utmost care and also to preserve grains by creating extra facility for storage purpose. On collective basis, way of thinking needs to be changed. It is not only unethical but also an act of being socially irresponsible to waste food when millions around the world sleep empty stomach. According to Tim Lang, professor at City University London, food waste is a symptom, not a problem. So to eradicate these symptom governments, non-governmental organizations like UN can discourage wasteful exercises by producers of the food, farmers, consumers and grocery stores. Food spoiling and wasting is causing physical destruction to mother earth. So let’s join hands to exterminate wastage of food for those who starve and are under privileged.

Thursday, January 9, 2020

Exorbitant Privilege The Rise And Fall Of The Dollar

The United States is a powerful country with a powerful economy. It has a huge presence in the international market and this is due primarily to its exorbitant privilege. Exorbitant privilege is the benefit that the US is able to enjoy due to the dollar’s status as the currency used for international reserves. Many economists have criticized this privilege of the US, including Barry Eichengreen. Eichengreen presents the argument that the dollar should not be the only currency that is used in the International Monetary System (IMS) and that despite its history, it no longer has a reason to be the only currency in the global economy, believing that the IMS would benefit from having multiple international currencies. He argues this by presenting the history of the economies throughout the world that have led to this point. His presents his argument in his book Exorbitant Privilege: The Rise and Fall of the Dollar and the Future of the International Monetary System. The dollar is the most widely used and most influential currency throughout the globe. This has allowed it to do many things including having other countries rely on it. This allows the US to exert its influence internationally. This also lets the US keep the possibility of a balance of payments crisis near improbable. This is because other countries trust in the dollar and its safety. When other countries buy our bonds or provide loans, they do so in dollars. This is advantageous to the US because it allows us toShow MoreRelatedThe Limitations Of Contemporary Currency Hegemony And The Transition1314 Words   |  6 Pagesis of overwhelming benefit, largely interpreted via the gains made by the US as the issuer of the dollar. These benefits have been both political and economic in nature, as discussed in the previous chapter. However, both domestic and external factors have begun to detract from the dollar’s pinnacle currency gains, and leads to questions of whether what was once described as an â€Å"exorbitant privilege† is deteriorating to the extent that it is a burden. While assessing the dollar’s evolved role asRead MoreToxic Inequality Summary1042 Words   |  5 PagesAfrican American and facing residential segregation when trying to find a house. In another scenario, Cindy Breslin, a struggling widowed mother, was suddenly faced with a string of bad luck. Cindy found out she had thousands of dollars owed on credit cards with exorbitant rates, forced to pay funeral expenses for her Vietnam veteran husband and her sister’s car accident, and trying to get her daughter through college with the money she has left over. Both of these scenarios are just some of the manyRead MoreThe Trump Economic Pl Trade, Regulatory And Energy Policy Impacts, By Peter Navarro And Wilbur Ross Essay1440 Words   |  6 PagesI will be reviewing Donald Trump economic report, â€Å"Scoring the Trump Economic Plan: Trade, Regulatory and Energy Policy Impacts,â₠¬  was written by Peter Navarro and Wilbur Ross. In addition to Jared Bernstein, â€Å"Dethrone ‘King Dollar,’† The New York Times, August 27, 2014. Neil Irwin, â€Å"The Trade Deficit Isn’t a Scorecard, and Cutting It Won’t Make America Great Again,† The New York Times, 3/27/2016 and Kenneth Rogoff, â€Å"Anti-Trade Rhetoric is a Recipe for Disaster,† The Boston Globe, 4/11/2016. Mr. NavarroRead MoreCase Study : Applied Behavior Analysis3182 Words   |  13 PagesShe told her parents that it was not fun and that she did not want to go to school anymore. At first it was simply crying but, has now escalated into head banging tantrums. Subsequently, Emily is refusing to sleep in her own bed. She is only able to fall asleep in her parents’ bed. Her parents have tried to transfer her back to her own bed once she goes to sleep but, this has been unsuccessful. The parents are very tired and have just decided in order to maintain the ir own sanity that she could remainRead MoreEurope Economic Crisis55278 Words   |  222 Pagesbusiness and labour markets. The overall fiscal stimulus, including the effects of automatic stabilisers, amounts to 5% of GDP in the EU. According to the Commission s analysis, unless policies take up the new challenges, potential GDP in the EU could fall to a permanently lower trajectory, due to several factors. First, protracted spells of unemployment in the workforce tend to lead to a permanent loss of skills. Second, the stock of equipment and infrastructure will decrease and become obsolete dueRead MoreBanking Laws and Jurisprudence Reviewer41247 Words   |  165 Pagescontingent accounts and booked the following day †¢ 9. Average Daily Balance †¢ Banks may impose and collect service charge or maintenance fee on savings and current accounts that fall below minimum monthly average daily balance (ADB) must be properly disclosed in the terms of deposit For dormant accounts: fall below 2 consecutive months 3. Time of payment of interest in time deposits †¢ Interest on time deposit may be paid upon maturity, withdrawal or advance provided that the interest paidRead MoreMis Summary25465 Words   |  102 Pages(ROA) is frequently used by researchers as a measure of firm performance - ROA incorporates both firm profitability and efficiency - The combined effect can be separated into return on Sales (ROS), income per dollar of salesïÆ'   profitability and asset turnover (ATO), sales generated per dollar of assets ïÆ'   efficiency Interaction of firm size and health: large firm effect - A firm must have sufficient resources or access to resources to withstand the strain of ERP implementation - It can take severalRead MoreDubais Political and Economic Development: Essay38738 Words   |  155 Pagesstrategies in the U.A.E. than in Saudi Arabia. 298 Prokop; Neil MacFarqhaur,A Bombing Shatters the Art of Saudi Denial, The New York Times (May IS, 2003). Zakaria, The Saudi Trap. O Joel Brinkley, Saudis Blame U.S. and Its Role in Iraq for Rise of Terror, The New York Times (October 14, 2004). O James. J. Zogby, What Arabs Think : Values, Beliefs and Concerns (Zogby InternationalIThe Arab Thought Foundation, 2002). 03 Ibid. 04 Ibid. 300 Ibid. Beginning during the oil boom ofRead MoreWalt Disney Case16863 Words   |  68 Pageseliminating O N O T CO PY The Walt Disney Company: The Entertainment King 701-035 distribution fees, Disney could save one-third of a film’s gross revenues. And to further improve the bottom line, Disney avoided paying exorbitant salaries by developing the studio’s own pool of talent. Observed one writer: â€Å"Disney himself became the box office attraction—as a producer of a 21 predictable family style and the father of a family of lovable animals.† D Disney expandedRead MoreRetail Management30153 Words   |  121 Pagesdiscount store; * Supermarkets - sell mostly food products; * Warehouse stores - warehouses that offer low-cost, often high-quantity goods piled on pallets or steel shelves; warehouse clubs charge a membership fee; * Variety stores or dollar stores - these offer extremely low-cost goods, with limited selection; * Demographic - retailers that aim at one particular segment (e.g., high-end retailers focusing on wealthy individuals). * Mom-And-Pop or Kirana Stores: is a retail outlet